Step |
Hyp |
Ref |
Expression |
1 |
|
sniffsupp.i |
|- ( ph -> I e. V ) |
2 |
|
sniffsupp.0 |
|- ( ph -> .0. e. W ) |
3 |
|
sniffsupp.f |
|- F = ( x e. I |-> if ( x = X , A , .0. ) ) |
4 |
|
snfi |
|- { X } e. Fin |
5 |
|
eldifsni |
|- ( x e. ( I \ { X } ) -> x =/= X ) |
6 |
5
|
adantl |
|- ( ( ph /\ x e. ( I \ { X } ) ) -> x =/= X ) |
7 |
6
|
neneqd |
|- ( ( ph /\ x e. ( I \ { X } ) ) -> -. x = X ) |
8 |
7
|
iffalsed |
|- ( ( ph /\ x e. ( I \ { X } ) ) -> if ( x = X , A , .0. ) = .0. ) |
9 |
8 1
|
suppss2 |
|- ( ph -> ( ( x e. I |-> if ( x = X , A , .0. ) ) supp .0. ) C_ { X } ) |
10 |
|
ssfi |
|- ( ( { X } e. Fin /\ ( ( x e. I |-> if ( x = X , A , .0. ) ) supp .0. ) C_ { X } ) -> ( ( x e. I |-> if ( x = X , A , .0. ) ) supp .0. ) e. Fin ) |
11 |
4 9 10
|
sylancr |
|- ( ph -> ( ( x e. I |-> if ( x = X , A , .0. ) ) supp .0. ) e. Fin ) |
12 |
|
funmpt |
|- Fun ( x e. I |-> if ( x = X , A , .0. ) ) |
13 |
1
|
mptexd |
|- ( ph -> ( x e. I |-> if ( x = X , A , .0. ) ) e. _V ) |
14 |
|
funisfsupp |
|- ( ( Fun ( x e. I |-> if ( x = X , A , .0. ) ) /\ ( x e. I |-> if ( x = X , A , .0. ) ) e. _V /\ .0. e. W ) -> ( ( x e. I |-> if ( x = X , A , .0. ) ) finSupp .0. <-> ( ( x e. I |-> if ( x = X , A , .0. ) ) supp .0. ) e. Fin ) ) |
15 |
12 13 2 14
|
mp3an2i |
|- ( ph -> ( ( x e. I |-> if ( x = X , A , .0. ) ) finSupp .0. <-> ( ( x e. I |-> if ( x = X , A , .0. ) ) supp .0. ) e. Fin ) ) |
16 |
11 15
|
mpbird |
|- ( ph -> ( x e. I |-> if ( x = X , A , .0. ) ) finSupp .0. ) |
17 |
3 16
|
eqbrtrid |
|- ( ph -> F finSupp .0. ) |