Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppcolem.f |
|- ( ph -> ( `' F " ( _V \ { Z } ) ) e. Fin ) |
2 |
|
fsuppcolem.g |
|- ( ph -> G : X -1-1-> Y ) |
3 |
|
cnvco |
|- `' ( F o. G ) = ( `' G o. `' F ) |
4 |
3
|
imaeq1i |
|- ( `' ( F o. G ) " ( _V \ { Z } ) ) = ( ( `' G o. `' F ) " ( _V \ { Z } ) ) |
5 |
|
imaco |
|- ( ( `' G o. `' F ) " ( _V \ { Z } ) ) = ( `' G " ( `' F " ( _V \ { Z } ) ) ) |
6 |
4 5
|
eqtri |
|- ( `' ( F o. G ) " ( _V \ { Z } ) ) = ( `' G " ( `' F " ( _V \ { Z } ) ) ) |
7 |
|
df-f1 |
|- ( G : X -1-1-> Y <-> ( G : X --> Y /\ Fun `' G ) ) |
8 |
7
|
simprbi |
|- ( G : X -1-1-> Y -> Fun `' G ) |
9 |
2 8
|
syl |
|- ( ph -> Fun `' G ) |
10 |
|
imafi |
|- ( ( Fun `' G /\ ( `' F " ( _V \ { Z } ) ) e. Fin ) -> ( `' G " ( `' F " ( _V \ { Z } ) ) ) e. Fin ) |
11 |
9 1 10
|
syl2anc |
|- ( ph -> ( `' G " ( `' F " ( _V \ { Z } ) ) ) e. Fin ) |
12 |
6 11
|
eqeltrid |
|- ( ph -> ( `' ( F o. G ) " ( _V \ { Z } ) ) e. Fin ) |