Step |
Hyp |
Ref |
Expression |
1 |
|
exancom |
|- ( E. z ( x B z /\ z A y ) <-> E. z ( z A y /\ x B z ) ) |
2 |
|
vex |
|- x e. _V |
3 |
|
vex |
|- y e. _V |
4 |
2 3
|
brco |
|- ( x ( A o. B ) y <-> E. z ( x B z /\ z A y ) ) |
5 |
|
vex |
|- z e. _V |
6 |
3 5
|
brcnv |
|- ( y `' A z <-> z A y ) |
7 |
5 2
|
brcnv |
|- ( z `' B x <-> x B z ) |
8 |
6 7
|
anbi12i |
|- ( ( y `' A z /\ z `' B x ) <-> ( z A y /\ x B z ) ) |
9 |
8
|
exbii |
|- ( E. z ( y `' A z /\ z `' B x ) <-> E. z ( z A y /\ x B z ) ) |
10 |
1 4 9
|
3bitr4i |
|- ( x ( A o. B ) y <-> E. z ( y `' A z /\ z `' B x ) ) |
11 |
10
|
opabbii |
|- { <. y , x >. | x ( A o. B ) y } = { <. y , x >. | E. z ( y `' A z /\ z `' B x ) } |
12 |
|
df-cnv |
|- `' ( A o. B ) = { <. y , x >. | x ( A o. B ) y } |
13 |
|
df-co |
|- ( `' B o. `' A ) = { <. y , x >. | E. z ( y `' A z /\ z `' B x ) } |
14 |
11 12 13
|
3eqtr4i |
|- `' ( A o. B ) = ( `' B o. `' A ) |