Metamath Proof Explorer


Theorem brco

Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004) (Revised by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses opelco.1
|- A e. _V
opelco.2
|- B e. _V
Assertion brco
|- ( A ( C o. D ) B <-> E. x ( A D x /\ x C B ) )

Proof

Step Hyp Ref Expression
1 opelco.1
 |-  A e. _V
2 opelco.2
 |-  B e. _V
3 brcog
 |-  ( ( A e. _V /\ B e. _V ) -> ( A ( C o. D ) B <-> E. x ( A D x /\ x C B ) ) )
4 1 2 3 mp2an
 |-  ( A ( C o. D ) B <-> E. x ( A D x /\ x C B ) )