Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004) (Revised by Mario Carneiro, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opelco.1 | |- A e. _V |
|
opelco.2 | |- B e. _V |
||
Assertion | brco | |- ( A ( C o. D ) B <-> E. x ( A D x /\ x C B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelco.1 | |- A e. _V |
|
2 | opelco.2 | |- B e. _V |
|
3 | brcog | |- ( ( A e. _V /\ B e. _V ) -> ( A ( C o. D ) B <-> E. x ( A D x /\ x C B ) ) ) |
|
4 | 1 2 3 | mp2an | |- ( A ( C o. D ) B <-> E. x ( A D x /\ x C B ) ) |