Metamath Proof Explorer


Definition df-co

Description: Define the composition of two classes. Definition 6.6(3) of TakeutiZaring p. 24. For example, ( ( exp o. cos )0 ) =e ( ex-co ) because ( cos0 ) = 1 (see cos0 ) and ( exp1 ) = e (see df-e ). Note that Definition 7 of Suppes p. 63 reverses A and B , uses /. instead of o. , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994)

Ref Expression
Assertion df-co
|- ( A o. B ) = { <. x , y >. | E. z ( x B z /\ z A y ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 cB
 |-  B
2 0 1 ccom
 |-  ( A o. B )
3 vx
 |-  x
4 vy
 |-  y
5 vz
 |-  z
6 3 cv
 |-  x
7 5 cv
 |-  z
8 6 7 1 wbr
 |-  x B z
9 4 cv
 |-  y
10 7 9 0 wbr
 |-  z A y
11 8 10 wa
 |-  ( x B z /\ z A y )
12 11 5 wex
 |-  E. z ( x B z /\ z A y )
13 12 3 4 copab
 |-  { <. x , y >. | E. z ( x B z /\ z A y ) }
14 2 13 wceq
 |-  ( A o. B ) = { <. x , y >. | E. z ( x B z /\ z A y ) }