Metamath Proof Explorer


Definition df-co

Description: Define the composition of two classes. Definition 6.6(3) of TakeutiZaring p. 24. For example, ( ( exp o. cos )0 ) =e ( ex-co ) because ( cos0 ) = 1 (see cos0 ) and ( exp1 ) = e (see df-e ). Note that Definition 7 of Suppes p. 63 reverses A and B , uses /. instead of o. , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994)

Ref Expression
Assertion df-co ( 𝐴𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧 ( 𝑥 𝐵 𝑧𝑧 𝐴 𝑦 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cB 𝐵
2 0 1 ccom ( 𝐴𝐵 )
3 vx 𝑥
4 vy 𝑦
5 vz 𝑧
6 3 cv 𝑥
7 5 cv 𝑧
8 6 7 1 wbr 𝑥 𝐵 𝑧
9 4 cv 𝑦
10 7 9 0 wbr 𝑧 𝐴 𝑦
11 8 10 wa ( 𝑥 𝐵 𝑧𝑧 𝐴 𝑦 )
12 11 5 wex 𝑧 ( 𝑥 𝐵 𝑧𝑧 𝐴 𝑦 )
13 12 3 4 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧 ( 𝑥 𝐵 𝑧𝑧 𝐴 𝑦 ) }
14 2 13 wceq ( 𝐴𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑧 ( 𝑥 𝐵 𝑧𝑧 𝐴 𝑦 ) }