Metamath Proof Explorer


Definition df-dm

Description: Define the domain of a class. Definition 3 of Suppes p. 59. For example, F = { <. 2 , 6 >. , <. 3 , 9 >. } -> dom F = { 2 , 3 } ( ex-dm ). Another example is the domain of the complex arctangent, ( A e. dom arctan <-> ( A e. CC /\ A =/= -ui /\ A =/= i ) ) (for proof see atandm ). Contrast with range (defined in df-rn ). For alternate definitions see dfdm2 , dfdm3 , and dfdm4 . The notation " dom " is used by Enderton; other authors sometimes use script D. (Contributed by NM, 1-Aug-1994)

Ref Expression
Assertion df-dm
|- dom A = { x | E. y x A y }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 0 cdm
 |-  dom A
2 vx
 |-  x
3 vy
 |-  y
4 2 cv
 |-  x
5 3 cv
 |-  y
6 4 5 0 wbr
 |-  x A y
7 6 3 wex
 |-  E. y x A y
8 7 2 cab
 |-  { x | E. y x A y }
9 1 8 wceq
 |-  dom A = { x | E. y x A y }