Metamath Proof Explorer


Theorem dfdm4

Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996)

Ref Expression
Assertion dfdm4
|- dom A = ran `' A

Proof

Step Hyp Ref Expression
1 vex
 |-  y e. _V
2 vex
 |-  x e. _V
3 1 2 brcnv
 |-  ( y `' A x <-> x A y )
4 3 exbii
 |-  ( E. y y `' A x <-> E. y x A y )
5 4 abbii
 |-  { x | E. y y `' A x } = { x | E. y x A y }
6 dfrn2
 |-  ran `' A = { x | E. y y `' A x }
7 df-dm
 |-  dom A = { x | E. y x A y }
8 5 6 7 3eqtr4ri
 |-  dom A = ran `' A