| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfdmf.1 |
|- F/_ x A |
| 2 |
|
dfdmf.2 |
|- F/_ y A |
| 3 |
|
df-dm |
|- dom A = { w | E. v w A v } |
| 4 |
|
nfcv |
|- F/_ y w |
| 5 |
|
nfcv |
|- F/_ y v |
| 6 |
4 2 5
|
nfbr |
|- F/ y w A v |
| 7 |
|
nfv |
|- F/ v w A y |
| 8 |
|
breq2 |
|- ( v = y -> ( w A v <-> w A y ) ) |
| 9 |
6 7 8
|
cbvexv1 |
|- ( E. v w A v <-> E. y w A y ) |
| 10 |
9
|
abbii |
|- { w | E. v w A v } = { w | E. y w A y } |
| 11 |
|
nfcv |
|- F/_ x w |
| 12 |
|
nfcv |
|- F/_ x y |
| 13 |
11 1 12
|
nfbr |
|- F/ x w A y |
| 14 |
13
|
nfex |
|- F/ x E. y w A y |
| 15 |
|
nfv |
|- F/ w E. y x A y |
| 16 |
|
breq1 |
|- ( w = x -> ( w A y <-> x A y ) ) |
| 17 |
16
|
exbidv |
|- ( w = x -> ( E. y w A y <-> E. y x A y ) ) |
| 18 |
14 15 17
|
cbvabw |
|- { w | E. y w A y } = { x | E. y x A y } |
| 19 |
3 10 18
|
3eqtri |
|- dom A = { x | E. y x A y } |