Metamath Proof Explorer


Theorem cbvexv1

Description: Rule used to change bound variables, using implicit substitution. Version of cbvex with a disjoint variable condition, which does not require ax-13 . See cbvexvw for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv for another variant. (Contributed by NM, 21-Jun-1993) (Revised by BJ, 31-May-2019)

Ref Expression
Hypotheses cbvalv1.nf1
|- F/ y ph
cbvalv1.nf2
|- F/ x ps
cbvalv1.1
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvexv1
|- ( E. x ph <-> E. y ps )

Proof

Step Hyp Ref Expression
1 cbvalv1.nf1
 |-  F/ y ph
2 cbvalv1.nf2
 |-  F/ x ps
3 cbvalv1.1
 |-  ( x = y -> ( ph <-> ps ) )
4 1 nfn
 |-  F/ y -. ph
5 2 nfn
 |-  F/ x -. ps
6 3 notbid
 |-  ( x = y -> ( -. ph <-> -. ps ) )
7 4 5 6 cbvalv1
 |-  ( A. x -. ph <-> A. y -. ps )
8 7 notbii
 |-  ( -. A. x -. ph <-> -. A. y -. ps )
9 df-ex
 |-  ( E. x ph <-> -. A. x -. ph )
10 df-ex
 |-  ( E. y ps <-> -. A. y -. ps )
11 8 9 10 3bitr4i
 |-  ( E. x ph <-> E. y ps )