Metamath Proof Explorer


Theorem cbvex

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Check out cbvexvw , cbvexv1 for weaker versions requiring fewer axioms. (Contributed by NM, 21-Jun-1993) (New usage is discouraged.)

Ref Expression
Hypotheses cbval.1
|- F/ y ph
cbval.2
|- F/ x ps
cbval.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvex
|- ( E. x ph <-> E. y ps )

Proof

Step Hyp Ref Expression
1 cbval.1
 |-  F/ y ph
2 cbval.2
 |-  F/ x ps
3 cbval.3
 |-  ( x = y -> ( ph <-> ps ) )
4 1 nfn
 |-  F/ y -. ph
5 2 nfn
 |-  F/ x -. ps
6 3 notbid
 |-  ( x = y -> ( -. ph <-> -. ps ) )
7 4 5 6 cbval
 |-  ( A. x -. ph <-> A. y -. ps )
8 alnex
 |-  ( A. x -. ph <-> -. E. x ph )
9 alnex
 |-  ( A. y -. ps <-> -. E. y ps )
10 7 8 9 3bitr3i
 |-  ( -. E. x ph <-> -. E. y ps )
11 10 con4bii
 |-  ( E. x ph <-> E. y ps )