Metamath Proof Explorer


Theorem dfdm4

Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996)

Ref Expression
Assertion dfdm4 domA=ranA-1

Proof

Step Hyp Ref Expression
1 vex yV
2 vex xV
3 1 2 brcnv yA-1xxAy
4 3 exbii yyA-1xyxAy
5 4 abbii x|yyA-1x=x|yxAy
6 dfrn2 ranA-1=x|yyA-1x
7 df-dm domA=x|yxAy
8 5 6 7 3eqtr4ri domA=ranA-1