Metamath Proof Explorer


Theorem mp3an2i

Description: mp3an with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016)

Ref Expression
Hypotheses mp3an2i.1
|- ph
mp3an2i.2
|- ( ps -> ch )
mp3an2i.3
|- ( ps -> th )
mp3an2i.4
|- ( ( ph /\ ch /\ th ) -> ta )
Assertion mp3an2i
|- ( ps -> ta )

Proof

Step Hyp Ref Expression
1 mp3an2i.1
 |-  ph
2 mp3an2i.2
 |-  ( ps -> ch )
3 mp3an2i.3
 |-  ( ps -> th )
4 mp3an2i.4
 |-  ( ( ph /\ ch /\ th ) -> ta )
5 1 4 mp3an1
 |-  ( ( ch /\ th ) -> ta )
6 2 3 5 syl2anc
 |-  ( ps -> ta )