Metamath Proof Explorer


Theorem mp3an2i

Description: mp3an with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016)

Ref Expression
Hypotheses mp3an2i.1 𝜑
mp3an2i.2 ( 𝜓𝜒 )
mp3an2i.3 ( 𝜓𝜃 )
mp3an2i.4 ( ( 𝜑𝜒𝜃 ) → 𝜏 )
Assertion mp3an2i ( 𝜓𝜏 )

Proof

Step Hyp Ref Expression
1 mp3an2i.1 𝜑
2 mp3an2i.2 ( 𝜓𝜒 )
3 mp3an2i.3 ( 𝜓𝜃 )
4 mp3an2i.4 ( ( 𝜑𝜒𝜃 ) → 𝜏 )
5 1 4 mp3an1 ( ( 𝜒𝜃 ) → 𝜏 )
6 2 3 5 syl2anc ( 𝜓𝜏 )