Metamath Proof Explorer


Theorem mapfien

Description: A bijection of the base sets induces a bijection on the set of finitely supported functions. (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019) (Revised by AV, 28-Jul-2024)

Ref Expression
Hypotheses mapfien.s S=xBA|finSuppZx
mapfien.t T=xDC|finSuppWx
mapfien.w W=GZ
mapfien.f φF:C1-1 ontoA
mapfien.g φG:B1-1 ontoD
mapfien.a φAU
mapfien.b φBV
mapfien.c φCX
mapfien.d φDY
mapfien.z φZB
Assertion mapfien φfSGfF:S1-1 ontoT

Proof

Step Hyp Ref Expression
1 mapfien.s S=xBA|finSuppZx
2 mapfien.t T=xDC|finSuppWx
3 mapfien.w W=GZ
4 mapfien.f φF:C1-1 ontoA
5 mapfien.g φG:B1-1 ontoD
6 mapfien.a φAU
7 mapfien.b φBV
8 mapfien.c φCX
9 mapfien.d φDY
10 mapfien.z φZB
11 eqid fSGfF=fSGfF
12 f1of G:B1-1 ontoDG:BD
13 5 12 syl φG:BD
14 13 adantr φfSG:BD
15 breq1 x=ffinSuppZxfinSuppZf
16 15 1 elrab2 fSfBAfinSuppZf
17 16 simplbi fSfBA
18 17 adantl φfSfBA
19 elmapi fBAf:AB
20 18 19 syl φfSf:AB
21 f1of F:C1-1 ontoAF:CA
22 4 21 syl φF:CA
23 22 adantr φfSF:CA
24 20 23 fcod φfSfF:CB
25 14 24 fcod φfSGfF:CD
26 9 8 elmapd φGfFDCGfF:CD
27 26 adantr φfSGfFDCGfF:CD
28 25 27 mpbird φfSGfFDC
29 1 2 3 4 5 6 7 8 9 10 mapfienlem1 φfSfinSuppWGfF
30 breq1 x=GfFfinSuppWxfinSuppWGfF
31 30 2 elrab2 GfFTGfFDCfinSuppWGfF
32 28 29 31 sylanbrc φfSGfFT
33 1 2 3 4 5 6 7 8 9 10 mapfienlem3 φgTG-1gF-1S
34 coass G-1gF-1F=G-1gF-1F
35 4 adantr φfSgTF:C1-1 ontoA
36 f1ococnv1 F:C1-1 ontoAF-1F=IC
37 35 36 syl φfSgTF-1F=IC
38 37 coeq2d φfSgTG-1gF-1F=G-1gIC
39 f1ocnv G:B1-1 ontoDG-1:D1-1 ontoB
40 f1of G-1:D1-1 ontoBG-1:DB
41 5 39 40 3syl φG-1:DB
42 41 adantr φgTG-1:DB
43 simpr φgTgT
44 breq1 x=gfinSuppWxfinSuppWg
45 44 2 elrab2 gTgDCfinSuppWg
46 43 45 sylib φgTgDCfinSuppWg
47 46 simpld φgTgDC
48 elmapi gDCg:CD
49 47 48 syl φgTg:CD
50 42 49 fcod φgTG-1g:CB
51 50 adantrl φfSgTG-1g:CB
52 fcoi1 G-1g:CBG-1gIC=G-1g
53 51 52 syl φfSgTG-1gIC=G-1g
54 38 53 eqtrd φfSgTG-1gF-1F=G-1g
55 34 54 eqtrid φfSgTG-1gF-1F=G-1g
56 55 eqeq2d φfSgTfF=G-1gF-1FfF=G-1g
57 coass G-1GfF=G-1GfF
58 5 adantr φfSgTG:B1-1 ontoD
59 f1ococnv1 G:B1-1 ontoDG-1G=IB
60 58 59 syl φfSgTG-1G=IB
61 60 coeq1d φfSgTG-1GfF=IBfF
62 24 adantrr φfSgTfF:CB
63 fcoi2 fF:CBIBfF=fF
64 62 63 syl φfSgTIBfF=fF
65 61 64 eqtrd φfSgTG-1GfF=fF
66 57 65 eqtr3id φfSgTG-1GfF=fF
67 66 eqeq2d φfSgTG-1g=G-1GfFG-1g=fF
68 eqcom G-1g=fFfF=G-1g
69 67 68 bitrdi φfSgTG-1g=G-1GfFfF=G-1g
70 56 69 bitr4d φfSgTfF=G-1gF-1FG-1g=G-1GfF
71 f1ofo F:C1-1 ontoAF:ContoA
72 35 71 syl φfSgTF:ContoA
73 ffn f:ABfFnA
74 18 19 73 3syl φfSfFnA
75 74 adantrr φfSgTfFnA
76 f1ocnv F:C1-1 ontoAF-1:A1-1 ontoC
77 f1of F-1:A1-1 ontoCF-1:AC
78 4 76 77 3syl φF-1:AC
79 78 adantr φgTF-1:AC
80 50 79 fcod φgTG-1gF-1:AB
81 80 ffnd φgTG-1gF-1FnA
82 81 adantrl φfSgTG-1gF-1FnA
83 cocan2 F:ContoAfFnAG-1gF-1FnAfF=G-1gF-1Ff=G-1gF-1
84 72 75 82 83 syl3anc φfSgTfF=G-1gF-1Ff=G-1gF-1
85 5 39 syl φG-1:D1-1 ontoB
86 85 adantr φfSgTG-1:D1-1 ontoB
87 f1of1 G-1:D1-1 ontoBG-1:D1-1B
88 86 87 syl φfSgTG-1:D1-1B
89 49 adantrl φfSgTg:CD
90 25 adantrr φfSgTGfF:CD
91 cocan1 G-1:D1-1Bg:CDGfF:CDG-1g=G-1GfFg=GfF
92 88 89 90 91 syl3anc φfSgTG-1g=G-1GfFg=GfF
93 70 84 92 3bitr3d φfSgTf=G-1gF-1g=GfF
94 11 32 33 93 f1o2d φfSGfF:S1-1 ontoT