Metamath Proof Explorer


Theorem fcoi1

Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Assertion fcoi1 F:ABFIA=F

Proof

Step Hyp Ref Expression
1 ffn F:ABFFnA
2 df-fn FFnAFunFdomF=A
3 eqimss domF=AdomFA
4 cnvi I-1=I
5 4 reseq1i I-1A=IA
6 5 cnveqi I-1A-1=IA-1
7 cnvresid IA-1=IA
8 6 7 eqtr2i IA=I-1A-1
9 8 coeq2i FIA=FI-1A-1
10 cores2 domFAFI-1A-1=FI
11 9 10 eqtrid domFAFIA=FI
12 3 11 syl domF=AFIA=FI
13 funrel FunFRelF
14 coi1 RelFFI=F
15 13 14 syl FunFFI=F
16 12 15 sylan9eqr FunFdomF=AFIA=F
17 2 16 sylbi FFnAFIA=F
18 1 17 syl F:ABFIA=F