Metamath Proof Explorer


Theorem eqtr2i

Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995)

Ref Expression
Hypotheses eqtr2i.1 A=B
eqtr2i.2 B=C
Assertion eqtr2i C=A

Proof

Step Hyp Ref Expression
1 eqtr2i.1 A=B
2 eqtr2i.2 B=C
3 1 2 eqtri A=C
4 3 eqcomi C=A