Metamath Proof Explorer
Description: An equality transitivity inference. (Contributed by NM, 21Feb1995)


Ref 
Expression 

Hypotheses 
eqtr2i.1 
$${\u22a2}{A}={B}$$ 


eqtr2i.2 
$${\u22a2}{B}={C}$$ 

Assertion 
eqtr2i 
$${\u22a2}{C}={A}$$ 
Proof
Step 
Hyp 
Ref 
Expression 
1 

eqtr2i.1 
$${\u22a2}{A}={B}$$ 
2 

eqtr2i.2 
$${\u22a2}{B}={C}$$ 
3 
1 2

eqtri 
$${\u22a2}{A}={C}$$ 
4 
3

eqcomi 
$${\u22a2}{C}={A}$$ 