Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
cnvresid
Next ⟩
funcnvres2
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnvresid
Description:
Converse of a restricted identity function.
(Contributed by
FL
, 4-Mar-2007)
Ref
Expression
Assertion
cnvresid
⊢
I
↾
A
-1
=
I
↾
A
Proof
Step
Hyp
Ref
Expression
1
cnvi
⊢
I
-1
=
I
2
1
eqcomi
⊢
I
=
I
-1
3
funi
⊢
Fun
⁡
I
4
funeq
⊢
I
=
I
-1
→
Fun
⁡
I
↔
Fun
⁡
I
-1
5
3
4
mpbii
⊢
I
=
I
-1
→
Fun
⁡
I
-1
6
funcnvres
⊢
Fun
⁡
I
-1
→
I
↾
A
-1
=
I
-1
↾
I
A
7
imai
⊢
I
A
=
A
8
1
7
reseq12i
⊢
I
-1
↾
I
A
=
I
↾
A
9
6
8
eqtrdi
⊢
Fun
⁡
I
-1
→
I
↾
A
-1
=
I
↾
A
10
2
5
9
mp2b
⊢
I
↾
A
-1
=
I
↾
A