Metamath Proof Explorer


Theorem imai

Description: Image under the identity relation. Theorem 3.16(viii) of Monk1 p. 38. (Contributed by NM, 30-Apr-1998)

Ref Expression
Assertion imai IA=A

Proof

Step Hyp Ref Expression
1 dfima3 IA=y|xxAxyI
2 df-br xIyxyI
3 vex yV
4 3 ideq xIyx=y
5 2 4 bitr3i xyIx=y
6 5 anbi1ci xAxyIx=yxA
7 6 exbii xxAxyIxx=yxA
8 eleq1w x=yxAyA
9 8 equsexvw xx=yxAyA
10 7 9 bitri xxAxyIyA
11 10 abbii y|xxAxyI=y|yA
12 abid2 y|yA=A
13 1 11 12 3eqtri IA=A