Metamath Proof Explorer


Theorem rnresi

Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004)

Ref Expression
Assertion rnresi ranIA=A

Proof

Step Hyp Ref Expression
1 df-ima IA=ranIA
2 imai IA=A
3 1 2 eqtr3i ranIA=A