Metamath Proof Explorer


Theorem reseq12i

Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses reseqi.1 A=B
reseqi.2 C=D
Assertion reseq12i AC=BD

Proof

Step Hyp Ref Expression
1 reseqi.1 A=B
2 reseqi.2 C=D
3 1 reseq1i AC=BC
4 2 reseq2i BC=BD
5 3 4 eqtri AC=BD