Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvresid | ⊢ ◡ ( I ↾ 𝐴 ) = ( I ↾ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvi | ⊢ ◡ I = I | |
2 | 1 | eqcomi | ⊢ I = ◡ I |
3 | funi | ⊢ Fun I | |
4 | funeq | ⊢ ( I = ◡ I → ( Fun I ↔ Fun ◡ I ) ) | |
5 | 3 4 | mpbii | ⊢ ( I = ◡ I → Fun ◡ I ) |
6 | funcnvres | ⊢ ( Fun ◡ I → ◡ ( I ↾ 𝐴 ) = ( ◡ I ↾ ( I “ 𝐴 ) ) ) | |
7 | imai | ⊢ ( I “ 𝐴 ) = 𝐴 | |
8 | 1 7 | reseq12i | ⊢ ( ◡ I ↾ ( I “ 𝐴 ) ) = ( I ↾ 𝐴 ) |
9 | 6 8 | eqtrdi | ⊢ ( Fun ◡ I → ◡ ( I ↾ 𝐴 ) = ( I ↾ 𝐴 ) ) |
10 | 2 5 9 | mp2b | ⊢ ◡ ( I ↾ 𝐴 ) = ( I ↾ 𝐴 ) |