Metamath Proof Explorer


Theorem cnvi

Description: The converse of the identity relation. Theorem 3.7(ii) of Monk1 p. 36. (Contributed by NM, 26-Apr-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion cnvi I-1=I

Proof

Step Hyp Ref Expression
1 vex xV
2 1 ideq yIxy=x
3 equcom y=xx=y
4 2 3 bitri yIxx=y
5 4 opabbii xy|yIx=xy|x=y
6 df-cnv I-1=xy|yIx
7 df-id I=xy|x=y
8 5 6 7 3eqtr4i I-1=I