Metamath Proof Explorer


Theorem fcoi1

Description: Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Assertion fcoi1
|- ( F : A --> B -> ( F o. ( _I |` A ) ) = F )

Proof

Step Hyp Ref Expression
1 ffn
 |-  ( F : A --> B -> F Fn A )
2 df-fn
 |-  ( F Fn A <-> ( Fun F /\ dom F = A ) )
3 eqimss
 |-  ( dom F = A -> dom F C_ A )
4 cnvi
 |-  `' _I = _I
5 4 reseq1i
 |-  ( `' _I |` A ) = ( _I |` A )
6 5 cnveqi
 |-  `' ( `' _I |` A ) = `' ( _I |` A )
7 cnvresid
 |-  `' ( _I |` A ) = ( _I |` A )
8 6 7 eqtr2i
 |-  ( _I |` A ) = `' ( `' _I |` A )
9 8 coeq2i
 |-  ( F o. ( _I |` A ) ) = ( F o. `' ( `' _I |` A ) )
10 cores2
 |-  ( dom F C_ A -> ( F o. `' ( `' _I |` A ) ) = ( F o. _I ) )
11 9 10 eqtrid
 |-  ( dom F C_ A -> ( F o. ( _I |` A ) ) = ( F o. _I ) )
12 3 11 syl
 |-  ( dom F = A -> ( F o. ( _I |` A ) ) = ( F o. _I ) )
13 funrel
 |-  ( Fun F -> Rel F )
14 coi1
 |-  ( Rel F -> ( F o. _I ) = F )
15 13 14 syl
 |-  ( Fun F -> ( F o. _I ) = F )
16 12 15 sylan9eqr
 |-  ( ( Fun F /\ dom F = A ) -> ( F o. ( _I |` A ) ) = F )
17 2 16 sylbi
 |-  ( F Fn A -> ( F o. ( _I |` A ) ) = F )
18 1 17 syl
 |-  ( F : A --> B -> ( F o. ( _I |` A ) ) = F )