Metamath Proof Explorer


Theorem fcod

Description: Composition of two mappings. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fcod.1 φF:BC
fcod.2 φG:AB
Assertion fcod φFG:AC

Proof

Step Hyp Ref Expression
1 fcod.1 φF:BC
2 fcod.2 φG:AB
3 fco F:BCG:ABFG:AC
4 1 2 3 syl2anc φFG:AC