Metamath Proof Explorer


Theorem fco2

Description: Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015)

Ref Expression
Assertion fco2 FB:BCG:ABFG:AC

Proof

Step Hyp Ref Expression
1 fco FB:BCG:ABFBG:AC
2 frn G:ABranGB
3 cores ranGBFBG=FG
4 2 3 syl G:ABFBG=FG
5 4 adantl FB:BCG:ABFBG=FG
6 5 feq1d FB:BCG:ABFBG:ACFG:AC
7 1 6 mpbid FB:BCG:ABFG:AC