Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
feq1d
Next ⟩
feq2d
Metamath Proof Explorer
Ascii
Unicode
Theorem
feq1d
Description:
Equality deduction for functions.
(Contributed by
NM
, 19-Feb-2008)
Ref
Expression
Hypothesis
feq1d.1
⊢
φ
→
F
=
G
Assertion
feq1d
⊢
φ
→
F
:
A
⟶
B
↔
G
:
A
⟶
B
Proof
Step
Hyp
Ref
Expression
1
feq1d.1
⊢
φ
→
F
=
G
2
feq1
⊢
F
=
G
→
F
:
A
⟶
B
↔
G
:
A
⟶
B
3
1
2
syl
⊢
φ
→
F
:
A
⟶
B
↔
G
:
A
⟶
B