Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
feq2d
Next ⟩
feq3d
Metamath Proof Explorer
Ascii
Unicode
Theorem
feq2d
Description:
Equality deduction for functions.
(Contributed by
Paul Chapman
, 22-Jun-2011)
Ref
Expression
Hypothesis
feq2d.1
⊢
φ
→
A
=
B
Assertion
feq2d
⊢
φ
→
F
:
A
⟶
C
↔
F
:
B
⟶
C
Proof
Step
Hyp
Ref
Expression
1
feq2d.1
⊢
φ
→
A
=
B
2
feq2
⊢
A
=
B
→
F
:
A
⟶
C
↔
F
:
B
⟶
C
3
1
2
syl
⊢
φ
→
F
:
A
⟶
C
↔
F
:
B
⟶
C