Metamath Proof Explorer


Theorem feq2d

Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypothesis feq2d.1 φ A = B
Assertion feq2d φ F : A C F : B C

Proof

Step Hyp Ref Expression
1 feq2d.1 φ A = B
2 feq2 A = B F : A C F : B C
3 1 2 syl φ F : A C F : B C