Metamath Proof Explorer


Theorem feq3d

Description: Equality deduction for functions. (Contributed by AV, 1-Jan-2020)

Ref Expression
Hypothesis feq2d.1 φA=B
Assertion feq3d φF:XAF:XB

Proof

Step Hyp Ref Expression
1 feq2d.1 φA=B
2 feq3 A=BF:XAF:XB
3 1 2 syl φF:XAF:XB