| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fco | 
							⊢ ( ( ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ 𝐶  ∧  𝐺 : 𝐴 ⟶ 𝐵 )  →  ( ( 𝐹  ↾  𝐵 )  ∘  𝐺 ) : 𝐴 ⟶ 𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							frn | 
							⊢ ( 𝐺 : 𝐴 ⟶ 𝐵  →  ran  𝐺  ⊆  𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							cores | 
							⊢ ( ran  𝐺  ⊆  𝐵  →  ( ( 𝐹  ↾  𝐵 )  ∘  𝐺 )  =  ( 𝐹  ∘  𝐺 ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							syl | 
							⊢ ( 𝐺 : 𝐴 ⟶ 𝐵  →  ( ( 𝐹  ↾  𝐵 )  ∘  𝐺 )  =  ( 𝐹  ∘  𝐺 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							⊢ ( ( ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ 𝐶  ∧  𝐺 : 𝐴 ⟶ 𝐵 )  →  ( ( 𝐹  ↾  𝐵 )  ∘  𝐺 )  =  ( 𝐹  ∘  𝐺 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							feq1d | 
							⊢ ( ( ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ 𝐶  ∧  𝐺 : 𝐴 ⟶ 𝐵 )  →  ( ( ( 𝐹  ↾  𝐵 )  ∘  𝐺 ) : 𝐴 ⟶ 𝐶  ↔  ( 𝐹  ∘  𝐺 ) : 𝐴 ⟶ 𝐶 ) )  | 
						
						
							| 7 | 
							
								1 6
							 | 
							mpbid | 
							⊢ ( ( ( 𝐹  ↾  𝐵 ) : 𝐵 ⟶ 𝐶  ∧  𝐺 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  𝐺 ) : 𝐴 ⟶ 𝐶 )  |