| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							vex | 
							⊢ 𝑧  ∈  V  | 
						
						
							| 2 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 3 | 
							
								1 2
							 | 
							brelrn | 
							⊢ ( 𝑧 𝐵 𝑦  →  𝑦  ∈  ran  𝐵 )  | 
						
						
							| 4 | 
							
								
							 | 
							ssel | 
							⊢ ( ran  𝐵  ⊆  𝐶  →  ( 𝑦  ∈  ran  𝐵  →  𝑦  ∈  𝐶 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 6 | 
							
								5
							 | 
							brresi | 
							⊢ ( 𝑦 ( 𝐴  ↾  𝐶 ) 𝑥  ↔  ( 𝑦  ∈  𝐶  ∧  𝑦 𝐴 𝑥 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							baib | 
							⊢ ( 𝑦  ∈  𝐶  →  ( 𝑦 ( 𝐴  ↾  𝐶 ) 𝑥  ↔  𝑦 𝐴 𝑥 ) )  | 
						
						
							| 8 | 
							
								3 4 7
							 | 
							syl56 | 
							⊢ ( ran  𝐵  ⊆  𝐶  →  ( 𝑧 𝐵 𝑦  →  ( 𝑦 ( 𝐴  ↾  𝐶 ) 𝑥  ↔  𝑦 𝐴 𝑥 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							pm5.32d | 
							⊢ ( ran  𝐵  ⊆  𝐶  →  ( ( 𝑧 𝐵 𝑦  ∧  𝑦 ( 𝐴  ↾  𝐶 ) 𝑥 )  ↔  ( 𝑧 𝐵 𝑦  ∧  𝑦 𝐴 𝑥 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							exbidv | 
							⊢ ( ran  𝐵  ⊆  𝐶  →  ( ∃ 𝑦 ( 𝑧 𝐵 𝑦  ∧  𝑦 ( 𝐴  ↾  𝐶 ) 𝑥 )  ↔  ∃ 𝑦 ( 𝑧 𝐵 𝑦  ∧  𝑦 𝐴 𝑥 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							opabbidv | 
							⊢ ( ran  𝐵  ⊆  𝐶  →  { 〈 𝑧 ,  𝑥 〉  ∣  ∃ 𝑦 ( 𝑧 𝐵 𝑦  ∧  𝑦 ( 𝐴  ↾  𝐶 ) 𝑥 ) }  =  { 〈 𝑧 ,  𝑥 〉  ∣  ∃ 𝑦 ( 𝑧 𝐵 𝑦  ∧  𝑦 𝐴 𝑥 ) } )  | 
						
						
							| 12 | 
							
								
							 | 
							df-co | 
							⊢ ( ( 𝐴  ↾  𝐶 )  ∘  𝐵 )  =  { 〈 𝑧 ,  𝑥 〉  ∣  ∃ 𝑦 ( 𝑧 𝐵 𝑦  ∧  𝑦 ( 𝐴  ↾  𝐶 ) 𝑥 ) }  | 
						
						
							| 13 | 
							
								
							 | 
							df-co | 
							⊢ ( 𝐴  ∘  𝐵 )  =  { 〈 𝑧 ,  𝑥 〉  ∣  ∃ 𝑦 ( 𝑧 𝐵 𝑦  ∧  𝑦 𝐴 𝑥 ) }  | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							3eqtr4g | 
							⊢ ( ran  𝐵  ⊆  𝐶  →  ( ( 𝐴  ↾  𝐶 )  ∘  𝐵 )  =  ( 𝐴  ∘  𝐵 ) )  |