| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							relres | 
							⊢ Rel  ( ( 𝐴  ∘  𝐵 )  ↾  𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							relco | 
							⊢ Rel  ( 𝐴  ∘  ( 𝐵  ↾  𝐶 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 4 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 5 | 
							
								3 4
							 | 
							brco | 
							⊢ ( 𝑥 ( 𝐴  ∘  𝐵 ) 𝑦  ↔  ∃ 𝑧 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							anbi2i | 
							⊢ ( ( 𝑥  ∈  𝐶  ∧  𝑥 ( 𝐴  ∘  𝐵 ) 𝑦 )  ↔  ( 𝑥  ∈  𝐶  ∧  ∃ 𝑧 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							19.42v | 
							⊢ ( ∃ 𝑧 ( 𝑥  ∈  𝐶  ∧  ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) )  ↔  ( 𝑥  ∈  𝐶  ∧  ∃ 𝑧 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							vex | 
							⊢ 𝑧  ∈  V  | 
						
						
							| 9 | 
							
								8
							 | 
							brresi | 
							⊢ ( 𝑥 ( 𝐵  ↾  𝐶 ) 𝑧  ↔  ( 𝑥  ∈  𝐶  ∧  𝑥 𝐵 𝑧 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							anbi1i | 
							⊢ ( ( 𝑥 ( 𝐵  ↾  𝐶 ) 𝑧  ∧  𝑧 𝐴 𝑦 )  ↔  ( ( 𝑥  ∈  𝐶  ∧  𝑥 𝐵 𝑧 )  ∧  𝑧 𝐴 𝑦 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							anass | 
							⊢ ( ( ( 𝑥  ∈  𝐶  ∧  𝑥 𝐵 𝑧 )  ∧  𝑧 𝐴 𝑦 )  ↔  ( 𝑥  ∈  𝐶  ∧  ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							bitr2i | 
							⊢ ( ( 𝑥  ∈  𝐶  ∧  ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) )  ↔  ( 𝑥 ( 𝐵  ↾  𝐶 ) 𝑧  ∧  𝑧 𝐴 𝑦 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							exbii | 
							⊢ ( ∃ 𝑧 ( 𝑥  ∈  𝐶  ∧  ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) )  ↔  ∃ 𝑧 ( 𝑥 ( 𝐵  ↾  𝐶 ) 𝑧  ∧  𝑧 𝐴 𝑦 ) )  | 
						
						
							| 14 | 
							
								6 7 13
							 | 
							3bitr2i | 
							⊢ ( ( 𝑥  ∈  𝐶  ∧  𝑥 ( 𝐴  ∘  𝐵 ) 𝑦 )  ↔  ∃ 𝑧 ( 𝑥 ( 𝐵  ↾  𝐶 ) 𝑧  ∧  𝑧 𝐴 𝑦 ) )  | 
						
						
							| 15 | 
							
								4
							 | 
							brresi | 
							⊢ ( 𝑥 ( ( 𝐴  ∘  𝐵 )  ↾  𝐶 ) 𝑦  ↔  ( 𝑥  ∈  𝐶  ∧  𝑥 ( 𝐴  ∘  𝐵 ) 𝑦 ) )  | 
						
						
							| 16 | 
							
								3 4
							 | 
							brco | 
							⊢ ( 𝑥 ( 𝐴  ∘  ( 𝐵  ↾  𝐶 ) ) 𝑦  ↔  ∃ 𝑧 ( 𝑥 ( 𝐵  ↾  𝐶 ) 𝑧  ∧  𝑧 𝐴 𝑦 ) )  | 
						
						
							| 17 | 
							
								14 15 16
							 | 
							3bitr4i | 
							⊢ ( 𝑥 ( ( 𝐴  ∘  𝐵 )  ↾  𝐶 ) 𝑦  ↔  𝑥 ( 𝐴  ∘  ( 𝐵  ↾  𝐶 ) ) 𝑦 )  | 
						
						
							| 18 | 
							
								1 2 17
							 | 
							eqbrriv | 
							⊢ ( ( 𝐴  ∘  𝐵 )  ↾  𝐶 )  =  ( 𝐴  ∘  ( 𝐵  ↾  𝐶 ) )  |