Step |
Hyp |
Ref |
Expression |
1 |
|
fco |
|- ( ( ( F |` B ) : B --> C /\ G : A --> B ) -> ( ( F |` B ) o. G ) : A --> C ) |
2 |
|
frn |
|- ( G : A --> B -> ran G C_ B ) |
3 |
|
cores |
|- ( ran G C_ B -> ( ( F |` B ) o. G ) = ( F o. G ) ) |
4 |
2 3
|
syl |
|- ( G : A --> B -> ( ( F |` B ) o. G ) = ( F o. G ) ) |
5 |
4
|
adantl |
|- ( ( ( F |` B ) : B --> C /\ G : A --> B ) -> ( ( F |` B ) o. G ) = ( F o. G ) ) |
6 |
5
|
feq1d |
|- ( ( ( F |` B ) : B --> C /\ G : A --> B ) -> ( ( ( F |` B ) o. G ) : A --> C <-> ( F o. G ) : A --> C ) ) |
7 |
1 6
|
mpbid |
|- ( ( ( F |` B ) : B --> C /\ G : A --> B ) -> ( F o. G ) : A --> C ) |