| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fco | 
							 |-  ( ( ( F |` B ) : B --> C /\ G : A --> B ) -> ( ( F |` B ) o. G ) : A --> C )  | 
						
						
							| 2 | 
							
								
							 | 
							frn | 
							 |-  ( G : A --> B -> ran G C_ B )  | 
						
						
							| 3 | 
							
								
							 | 
							cores | 
							 |-  ( ran G C_ B -> ( ( F |` B ) o. G ) = ( F o. G ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							syl | 
							 |-  ( G : A --> B -> ( ( F |` B ) o. G ) = ( F o. G ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							 |-  ( ( ( F |` B ) : B --> C /\ G : A --> B ) -> ( ( F |` B ) o. G ) = ( F o. G ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							feq1d | 
							 |-  ( ( ( F |` B ) : B --> C /\ G : A --> B ) -> ( ( ( F |` B ) o. G ) : A --> C <-> ( F o. G ) : A --> C ) )  | 
						
						
							| 7 | 
							
								1 6
							 | 
							mpbid | 
							 |-  ( ( ( F |` B ) : B --> C /\ G : A --> B ) -> ( F o. G ) : A --> C )  |