Metamath Proof Explorer
		
		
		
		Description:  Composition of two mappings.  (Contributed by Glauco Siliprandi, 26-Jun-2021)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						fcod.1 | 
						⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ 𝐶 )  | 
					
					
						 | 
						 | 
						fcod.2 | 
						⊢ ( 𝜑  →  𝐺 : 𝐴 ⟶ 𝐵 )  | 
					
				
					 | 
					Assertion | 
					fcod | 
					⊢  ( 𝜑  →  ( 𝐹  ∘  𝐺 ) : 𝐴 ⟶ 𝐶 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fcod.1 | 
							⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ 𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							fcod.2 | 
							⊢ ( 𝜑  →  𝐺 : 𝐴 ⟶ 𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							fco | 
							⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐺 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  𝐺 ) : 𝐴 ⟶ 𝐶 )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐹  ∘  𝐺 ) : 𝐴 ⟶ 𝐶 )  |