Description: Deduction form of isfsupp . (Contributed by SN, 29-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isfsuppd.r | |
|
isfsuppd.z | |
||
isfsuppd.1 | |
||
isfsuppd.2 | |
||
Assertion | isfsuppd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfsuppd.r | |
|
2 | isfsuppd.z | |
|
3 | isfsuppd.1 | |
|
4 | isfsuppd.2 | |
|
5 | isfsupp | |
|
6 | 1 2 5 | syl2anc | |
7 | 3 4 6 | mpbir2and | |