Metamath Proof Explorer


Theorem isfsuppd

Description: Deduction form of isfsupp . (Contributed by SN, 29-Jul-2024)

Ref Expression
Hypotheses isfsuppd.r φRV
isfsuppd.z φZW
isfsuppd.1 φFunR
isfsuppd.2 φRsuppZFin
Assertion isfsuppd φfinSuppZR

Proof

Step Hyp Ref Expression
1 isfsuppd.r φRV
2 isfsuppd.z φZW
3 isfsuppd.1 φFunR
4 isfsuppd.2 φRsuppZFin
5 isfsupp RVZWfinSuppZRFunRRsuppZFin
6 1 2 5 syl2anc φfinSuppZRFunRRsuppZFin
7 3 4 6 mpbir2and φfinSuppZR