Description: Deduction form of isfsupp . (Contributed by SN, 29-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isfsuppd.r | ||
isfsuppd.z | |||
isfsuppd.1 | |||
isfsuppd.2 | |||
Assertion | isfsuppd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfsuppd.r | ||
2 | isfsuppd.z | ||
3 | isfsuppd.1 | ||
4 | isfsuppd.2 | ||
5 | isfsupp | ||
6 | 1 2 5 | syl2anc | |
7 | 3 4 6 | mpbir2and |