Metamath Proof Explorer


Theorem isfsuppd

Description: Deduction form of isfsupp . (Contributed by SN, 29-Jul-2024)

Ref Expression
Hypotheses isfsuppd.r
|- ( ph -> R e. V )
isfsuppd.z
|- ( ph -> Z e. W )
isfsuppd.1
|- ( ph -> Fun R )
isfsuppd.2
|- ( ph -> ( R supp Z ) e. Fin )
Assertion isfsuppd
|- ( ph -> R finSupp Z )

Proof

Step Hyp Ref Expression
1 isfsuppd.r
 |-  ( ph -> R e. V )
2 isfsuppd.z
 |-  ( ph -> Z e. W )
3 isfsuppd.1
 |-  ( ph -> Fun R )
4 isfsuppd.2
 |-  ( ph -> ( R supp Z ) e. Fin )
5 isfsupp
 |-  ( ( R e. V /\ Z e. W ) -> ( R finSupp Z <-> ( Fun R /\ ( R supp Z ) e. Fin ) ) )
6 1 2 5 syl2anc
 |-  ( ph -> ( R finSupp Z <-> ( Fun R /\ ( R supp Z ) e. Fin ) ) )
7 3 4 6 mpbir2and
 |-  ( ph -> R finSupp Z )