Description: Deduction form of isfsupp . (Contributed by SN, 29-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isfsuppd.r | |- ( ph -> R e. V ) |
|
isfsuppd.z | |- ( ph -> Z e. W ) |
||
isfsuppd.1 | |- ( ph -> Fun R ) |
||
isfsuppd.2 | |- ( ph -> ( R supp Z ) e. Fin ) |
||
Assertion | isfsuppd | |- ( ph -> R finSupp Z ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfsuppd.r | |- ( ph -> R e. V ) |
|
2 | isfsuppd.z | |- ( ph -> Z e. W ) |
|
3 | isfsuppd.1 | |- ( ph -> Fun R ) |
|
4 | isfsuppd.2 | |- ( ph -> ( R supp Z ) e. Fin ) |
|
5 | isfsupp | |- ( ( R e. V /\ Z e. W ) -> ( R finSupp Z <-> ( Fun R /\ ( R supp Z ) e. Fin ) ) ) |
|
6 | 1 2 5 | syl2anc | |- ( ph -> ( R finSupp Z <-> ( Fun R /\ ( R supp Z ) e. Fin ) ) ) |
7 | 3 4 6 | mpbir2and | |- ( ph -> R finSupp Z ) |