Description: Deduction form of isfsupp . (Contributed by SN, 29-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isfsuppd.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
isfsuppd.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | ||
isfsuppd.1 | ⊢ ( 𝜑 → Fun 𝑅 ) | ||
isfsuppd.2 | ⊢ ( 𝜑 → ( 𝑅 supp 𝑍 ) ∈ Fin ) | ||
Assertion | isfsuppd | ⊢ ( 𝜑 → 𝑅 finSupp 𝑍 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfsuppd.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
2 | isfsuppd.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | |
3 | isfsuppd.1 | ⊢ ( 𝜑 → Fun 𝑅 ) | |
4 | isfsuppd.2 | ⊢ ( 𝜑 → ( 𝑅 supp 𝑍 ) ∈ Fin ) | |
5 | isfsupp | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑅 finSupp 𝑍 ↔ ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) ) | |
6 | 1 2 5 | syl2anc | ⊢ ( 𝜑 → ( 𝑅 finSupp 𝑍 ↔ ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) ) |
7 | 3 4 6 | mpbir2and | ⊢ ( 𝜑 → 𝑅 finSupp 𝑍 ) |