Metamath Proof Explorer


Theorem fsuppmptdm

Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019)

Ref Expression
Hypotheses fsuppmptdm.f F=xAY
fsuppmptdm.a φAFin
fsuppmptdm.y φxAYV
fsuppmptdm.z φZW
Assertion fsuppmptdm φfinSuppZF

Proof

Step Hyp Ref Expression
1 fsuppmptdm.f F=xAY
2 fsuppmptdm.a φAFin
3 fsuppmptdm.y φxAYV
4 fsuppmptdm.z φZW
5 3 1 fmptd φF:AV
6 5 2 4 fdmfifsupp φfinSuppZF