Metamath Proof Explorer


Theorem fdmfifsupp

Description: A function with a finite domain is always finitely supported. (Contributed by AV, 25-May-2019)

Ref Expression
Hypotheses fdmfisuppfi.f φF:DR
fdmfisuppfi.d φDFin
fdmfisuppfi.z φZV
Assertion fdmfifsupp φfinSuppZF

Proof

Step Hyp Ref Expression
1 fdmfisuppfi.f φF:DR
2 fdmfisuppfi.d φDFin
3 fdmfisuppfi.z φZV
4 1 ffund φFunF
5 1 2 3 fdmfisuppfi φFsuppZFin
6 1 ffnd φFFnD
7 fnex FFnDDFinFV
8 6 2 7 syl2anc φFV
9 isfsupp FVZVfinSuppZFFunFFsuppZFin
10 8 3 9 syl2anc φfinSuppZFFunFFsuppZFin
11 4 5 10 mpbir2and φfinSuppZF