Metamath Proof Explorer


Theorem fsuppsssupp

Description: If the support of a function is a subset of the support of a finitely supported function, the function is finitely supported. (Contributed by AV, 2-Jul-2019) (Proof shortened by AV, 15-Jul-2019)

Ref Expression
Assertion fsuppsssupp GVFunGfinSuppZFGsuppZFsuppZfinSuppZG

Proof

Step Hyp Ref Expression
1 simpll GVFunGfinSuppZFGsuppZFsuppZGV
2 simplr GVFunGfinSuppZFGsuppZFsuppZFunG
3 relfsupp RelfinSupp
4 3 brrelex2i finSuppZFZV
5 4 ad2antrl GVFunGfinSuppZFGsuppZFsuppZZV
6 id finSuppZFfinSuppZF
7 6 fsuppimpd finSuppZFFsuppZFin
8 7 anim1i finSuppZFGsuppZFsuppZFsuppZFinGsuppZFsuppZ
9 8 adantl GVFunGfinSuppZFGsuppZFsuppZFsuppZFinGsuppZFsuppZ
10 suppssfifsupp GVFunGZVFsuppZFinGsuppZFsuppZfinSuppZG
11 1 2 5 9 10 syl31anc GVFunGfinSuppZFGsuppZFsuppZfinSuppZG