Metamath Proof Explorer


Theorem fsuppcor

Description: The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019)

Ref Expression
Hypotheses fsuppcor.0 φ0˙W
fsuppcor.z φZB
fsuppcor.f φF:AC
fsuppcor.g φG:BD
fsuppcor.s φCB
fsuppcor.a φAU
fsuppcor.b φBV
fsuppcor.n φfinSuppZF
fsuppcor.i φGZ=0˙
Assertion fsuppcor φfinSupp0˙GF

Proof

Step Hyp Ref Expression
1 fsuppcor.0 φ0˙W
2 fsuppcor.z φZB
3 fsuppcor.f φF:AC
4 fsuppcor.g φG:BD
5 fsuppcor.s φCB
6 fsuppcor.a φAU
7 fsuppcor.b φBV
8 fsuppcor.n φfinSuppZF
9 fsuppcor.i φGZ=0˙
10 4 ffund φFunG
11 3 ffund φFunF
12 funco FunGFunFFunGF
13 10 11 12 syl2anc φFunGF
14 8 fsuppimpd φFsuppZFin
15 4 5 fssresd φGC:CD
16 fco2 GC:CDF:ACGF:AD
17 15 3 16 syl2anc φGF:AD
18 eldifi xAsuppZFxA
19 fvco3 F:ACxAGFx=GFx
20 3 18 19 syl2an φxAsuppZFGFx=GFx
21 ssidd φFsuppZFsuppZ
22 3 21 6 2 suppssr φxAsuppZFFx=Z
23 22 fveq2d φxAsuppZFGFx=GZ
24 9 adantr φxAsuppZFGZ=0˙
25 20 23 24 3eqtrd φxAsuppZFGFx=0˙
26 17 25 suppss φGFsupp0˙FsuppZ
27 14 26 ssfid φGFsupp0˙Fin
28 4 7 fexd φGV
29 3 6 fexd φFV
30 coexg GVFVGFV
31 28 29 30 syl2anc φGFV
32 isfsupp GFV0˙WfinSupp0˙GFFunGFGFsupp0˙Fin
33 31 1 32 syl2anc φfinSupp0˙GFFunGFGFsupp0˙Fin
34 13 27 33 mpbir2and φfinSupp0˙GF