Metamath Proof Explorer


Theorem fexd

Description: If the domain of a mapping is a set, the function is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fexd.1 φF:AB
fexd.2 φAC
Assertion fexd φFV

Proof

Step Hyp Ref Expression
1 fexd.1 φF:AB
2 fexd.2 φAC
3 fex F:ABACFV
4 1 2 3 syl2anc φFV