Metamath Proof Explorer


Theorem fexd

Description: If the domain of a mapping is a set, the function is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fexd.1 ( 𝜑𝐹 : 𝐴𝐵 )
fexd.2 ( 𝜑𝐴𝐶 )
Assertion fexd ( 𝜑𝐹 ∈ V )

Proof

Step Hyp Ref Expression
1 fexd.1 ( 𝜑𝐹 : 𝐴𝐵 )
2 fexd.2 ( 𝜑𝐴𝐶 )
3 fex ( ( 𝐹 : 𝐴𝐵𝐴𝐶 ) → 𝐹 ∈ V )
4 1 2 3 syl2anc ( 𝜑𝐹 ∈ V )