Metamath Proof Explorer


Theorem mptfvmpt

Description: A function in maps-to notation as the value of another function in maps-to notation. (Contributed by AV, 20-Aug-2022)

Ref Expression
Hypotheses mptfvmpt.y y=YM=xVA
mptfvmpt.g G=yWM
mptfvmpt.v V=FX
Assertion mptfvmpt YWGY=xVA

Proof

Step Hyp Ref Expression
1 mptfvmpt.y y=YM=xVA
2 mptfvmpt.g G=yWM
3 mptfvmpt.v V=FX
4 3 fvexi VV
5 4 mptex xVAV
6 1 2 5 fvmpt YWGY=xVA