Metamath Proof Explorer


Theorem mptfvmpt

Description: A function in maps-to notation as the value of another function in maps-to notation. (Contributed by AV, 20-Aug-2022)

Ref Expression
Hypotheses mptfvmpt.y y = Y M = x V A
mptfvmpt.g G = y W M
mptfvmpt.v V = F X
Assertion mptfvmpt Y W G Y = x V A

Proof

Step Hyp Ref Expression
1 mptfvmpt.y y = Y M = x V A
2 mptfvmpt.g G = y W M
3 mptfvmpt.v V = F X
4 3 fvexi V V
5 4 mptex x V A V
6 1 2 5 fvmpt Y W G Y = x V A