Metamath Proof Explorer


Theorem mptfvmpt

Description: A function in maps-to notation as the value of another function in maps-to notation. (Contributed by AV, 20-Aug-2022)

Ref Expression
Hypotheses mptfvmpt.y
|- ( y = Y -> M = ( x e. V |-> A ) )
mptfvmpt.g
|- G = ( y e. W |-> M )
mptfvmpt.v
|- V = ( F ` X )
Assertion mptfvmpt
|- ( Y e. W -> ( G ` Y ) = ( x e. V |-> A ) )

Proof

Step Hyp Ref Expression
1 mptfvmpt.y
 |-  ( y = Y -> M = ( x e. V |-> A ) )
2 mptfvmpt.g
 |-  G = ( y e. W |-> M )
3 mptfvmpt.v
 |-  V = ( F ` X )
4 3 fvexi
 |-  V e. _V
5 4 mptex
 |-  ( x e. V |-> A ) e. _V
6 1 2 5 fvmpt
 |-  ( Y e. W -> ( G ` Y ) = ( x e. V |-> A ) )