Step |
Hyp |
Ref |
Expression |
1 |
|
eufnfv.1 |
|- A e. _V |
2 |
|
eufnfv.2 |
|- B e. _V |
3 |
1
|
mptex |
|- ( x e. A |-> B ) e. _V |
4 |
|
eqeq2 |
|- ( z = ( x e. A |-> B ) -> ( f = z <-> f = ( x e. A |-> B ) ) ) |
5 |
4
|
bibi2d |
|- ( z = ( x e. A |-> B ) -> ( ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = z ) <-> ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = ( x e. A |-> B ) ) ) ) |
6 |
5
|
albidv |
|- ( z = ( x e. A |-> B ) -> ( A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = z ) <-> A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = ( x e. A |-> B ) ) ) ) |
7 |
3 6
|
spcev |
|- ( A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = ( x e. A |-> B ) ) -> E. z A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = z ) ) |
8 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
9 |
2 8
|
fnmpti |
|- ( x e. A |-> B ) Fn A |
10 |
|
fneq1 |
|- ( f = ( x e. A |-> B ) -> ( f Fn A <-> ( x e. A |-> B ) Fn A ) ) |
11 |
9 10
|
mpbiri |
|- ( f = ( x e. A |-> B ) -> f Fn A ) |
12 |
11
|
pm4.71ri |
|- ( f = ( x e. A |-> B ) <-> ( f Fn A /\ f = ( x e. A |-> B ) ) ) |
13 |
|
dffn5 |
|- ( f Fn A <-> f = ( x e. A |-> ( f ` x ) ) ) |
14 |
|
eqeq1 |
|- ( f = ( x e. A |-> ( f ` x ) ) -> ( f = ( x e. A |-> B ) <-> ( x e. A |-> ( f ` x ) ) = ( x e. A |-> B ) ) ) |
15 |
13 14
|
sylbi |
|- ( f Fn A -> ( f = ( x e. A |-> B ) <-> ( x e. A |-> ( f ` x ) ) = ( x e. A |-> B ) ) ) |
16 |
|
fvex |
|- ( f ` x ) e. _V |
17 |
16
|
rgenw |
|- A. x e. A ( f ` x ) e. _V |
18 |
|
mpteqb |
|- ( A. x e. A ( f ` x ) e. _V -> ( ( x e. A |-> ( f ` x ) ) = ( x e. A |-> B ) <-> A. x e. A ( f ` x ) = B ) ) |
19 |
17 18
|
ax-mp |
|- ( ( x e. A |-> ( f ` x ) ) = ( x e. A |-> B ) <-> A. x e. A ( f ` x ) = B ) |
20 |
15 19
|
bitrdi |
|- ( f Fn A -> ( f = ( x e. A |-> B ) <-> A. x e. A ( f ` x ) = B ) ) |
21 |
20
|
pm5.32i |
|- ( ( f Fn A /\ f = ( x e. A |-> B ) ) <-> ( f Fn A /\ A. x e. A ( f ` x ) = B ) ) |
22 |
12 21
|
bitr2i |
|- ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = ( x e. A |-> B ) ) |
23 |
7 22
|
mpg |
|- E. z A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = z ) |
24 |
|
eu6 |
|- ( E! f ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> E. z A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = z ) ) |
25 |
23 24
|
mpbir |
|- E! f ( f Fn A /\ A. x e. A ( f ` x ) = B ) |