Metamath Proof Explorer


Theorem spcev

Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993) (Proof shortened by Eric Schmidt, 22-Dec-2006)

Ref Expression
Hypotheses spcv.1
|- A e. _V
spcv.2
|- ( x = A -> ( ph <-> ps ) )
Assertion spcev
|- ( ps -> E. x ph )

Proof

Step Hyp Ref Expression
1 spcv.1
 |-  A e. _V
2 spcv.2
 |-  ( x = A -> ( ph <-> ps ) )
3 2 spcegv
 |-  ( A e. _V -> ( ps -> E. x ph ) )
4 1 3 ax-mp
 |-  ( ps -> E. x ph )