Metamath Proof Explorer


Theorem spcev

Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993) (Proof shortened by Eric Schmidt, 22-Dec-2006)

Ref Expression
Hypotheses spcv.1 AV
spcv.2 x=Aφψ
Assertion spcev ψxφ

Proof

Step Hyp Ref Expression
1 spcv.1 AV
2 spcv.2 x=Aφψ
3 2 spcegv AVψxφ
4 1 3 ax-mp ψxφ