Metamath Proof Explorer


Theorem spc2ev

Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995)

Ref Expression
Hypotheses spc2ev.1 AV
spc2ev.2 BV
spc2ev.3 x=Ay=Bφψ
Assertion spc2ev ψxyφ

Proof

Step Hyp Ref Expression
1 spc2ev.1 AV
2 spc2ev.2 BV
3 spc2ev.3 x=Ay=Bφψ
4 3 spc2egv AVBVψxyφ
5 1 2 4 mp2an ψxyφ