| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dmres | 
							 |-  dom ( F |` A ) = ( A i^i dom F )  | 
						
						
							| 2 | 
							
								1
							 | 
							elin2 | 
							 |-  ( B e. dom ( F |` A ) <-> ( B e. A /\ B e. dom F ) )  | 
						
						
							| 3 | 
							
								
							 | 
							funres | 
							 |-  ( Fun F -> Fun ( F |` A ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fvelrn | 
							 |-  ( ( Fun ( F |` A ) /\ B e. dom ( F |` A ) ) -> ( ( F |` A ) ` B ) e. ran ( F |` A ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylan | 
							 |-  ( ( Fun F /\ B e. dom ( F |` A ) ) -> ( ( F |` A ) ` B ) e. ran ( F |` A ) )  | 
						
						
							| 6 | 
							
								
							 | 
							df-ima | 
							 |-  ( F " A ) = ran ( F |` A )  | 
						
						
							| 7 | 
							
								6
							 | 
							eleq2i | 
							 |-  ( ( F ` B ) e. ( F " A ) <-> ( F ` B ) e. ran ( F |` A ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fvres | 
							 |-  ( B e. A -> ( ( F |` A ) ` B ) = ( F ` B ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							eleq1d | 
							 |-  ( B e. A -> ( ( ( F |` A ) ` B ) e. ran ( F |` A ) <-> ( F ` B ) e. ran ( F |` A ) ) )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							bitr4id | 
							 |-  ( B e. A -> ( ( F ` B ) e. ( F " A ) <-> ( ( F |` A ) ` B ) e. ran ( F |` A ) ) )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							syl5ibrcom | 
							 |-  ( ( Fun F /\ B e. dom ( F |` A ) ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ex | 
							 |-  ( Fun F -> ( B e. dom ( F |` A ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) )  | 
						
						
							| 13 | 
							
								2 12
							 | 
							biimtrrid | 
							 |-  ( Fun F -> ( ( B e. A /\ B e. dom F ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							expd | 
							 |-  ( Fun F -> ( B e. A -> ( B e. dom F -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							com12 | 
							 |-  ( B e. A -> ( Fun F -> ( B e. dom F -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							impd | 
							 |-  ( B e. A -> ( ( Fun F /\ B e. dom F ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							pm2.43b | 
							 |-  ( ( Fun F /\ B e. dom F ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) )  |